在Openhydra编程平台上部署了Octave实验环境:http://nbzch.cn:6031/
以下是一个使用Octave绘制RC充电电路充电时间曲线的简单程序。该程序假设电路中的电容初始电压为0,电压随着时间按指数规律上升,直到接近电源电压 ( V_{0} )。
% RC充电电路充电时间曲线绘制
% 参数设置
R = 1000; % 电阻值 (欧姆)
C = 0.001; % 电容值 (法拉)
V0 = 5; % 电源电压 (伏特)
t_end = 5 * R * C; % 模拟时间,取5倍时间常数
dt = t_end / 500; % 时间步长
% 时间向量
t = 0:dt:t_end;
% 计算电容两端的电压
Vc = V0 * (1 - exp(-t / (R * C)));
% 绘制曲线
figure;
plot(t, Vc, 'b-', 'LineWidth', 2);
grid on;
xlabel('时间 (s)');
ylabel('电容电压 V_c (V)');
title('RC充电电路电压-时间曲线');
legend('V_c(t) = V_0 (1 - e^{-t / RC})');
说明:
- 时间常数 (tau = R cdot C):
电路中的关键特性,由电阻和电容决定,表示电容电压达到电源电压63%的时间。 - 模拟时间 (t_{text{end}} = 5 cdot tau):
通常选择到5倍时间常数,电容电压基本达到电源电压。 - 指数公式:
电容电压随时间变化的公式为:
[
V_c(t) = V_0 cdot left( 1 - e^{-t / (R cdot C)} right)
]
运行以上代码后,您将得到一条曲线,展示电容两端电压随时间的变化情况。
以下是使用 Octave 绘制 RC 电路放电时间曲线的程序。假设电容初始电压为 ( V_0 ),电容电压随时间按指数规律下降。
% RC电路放电时间曲线绘制
% 参数设置
R = 1000; % 电阻值 (欧姆)
C = 0.001; % 电容值 (法拉)
V0 = 5; % 电容初始电压 (伏特)
t_end = 5 * R * C; % 模拟时间,取5倍时间常数
dt = t_end / 500; % 时间步长
% 时间向量
t = 0:dt:t_end;
% 计算电容两端的电压
Vc = V0 * exp(-t / (R * C));
% 绘制曲线
figure;
plot(t, Vc, 'r-', 'LineWidth', 2);
grid on;
xlabel('时间 (s)');
ylabel('电容电压 V_c (V)');
title('RC电路放电电压-时间曲线');
legend('V_c(t) = V_0 e^{-t / RC}');
说明:
- 放电公式:
电容电压随时间的变化公式为:
[
V_c(t) = V_0 cdot e^{-t / (R cdot C)}
]
表示电容电压按指数规律下降。 - 时间常数 (tau = R cdot C):
放电过程的关键特性,决定了电容电压衰减的速度。 - 模拟时间:
放电过程中,电容电压在 ( 5 cdot tau ) 之后基本接近 0。
运行代码后,您将得到一条曲线,展示电容放电过程中电压随时间的衰减情况。